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Sankhy? : The Indian Journal of Statistics 

1987, Volume 49, Series A, Pt. 3, pp. 335-346. 

AN OPTIMAL PROCEDURE FOR PARTITIONING A 

SET OF NORMAL POPULATIONS WITH 

RESPECT TO A CONTROL 

By AJIT C. TAMHANE 

Northwestern University, Evanston, USA 

SUMMARY. An optimal solution is derived for the procedure proposed by Tong (1969) 
for the problem of simultaneously partioning the test population means m (1 < * < k) as being 

less than fi0 -f 5 
* or being greater than /?0 +$* where /i0 denotes the control population mean and 
% 2 

8*, #*(&* < &*) are pressigned constants. The tables of the optimal design constants are provided 

for implementing the procedure which guarantees a specified probability of making a correct 

decision regardless of the true values of the ?a. Savings associated with this optimal ^solution 
are illustrated numerically. 

1. Introduction 

The purpose of the present paper is to provide an optimal version of the 

procedure proposed by Tong (1969) for the following problem : Let Il0, ni5 ..., 

IT* be (fe+1) normal populations with unknown means /?0,[ix, ...,fik and a 

common variance o*2 which is assumed to be known. Here II0 denotes the 

control population and II? (1 ̂  i < k) denotes a test population. For arbi 

trary but fixed constants d[ and 8* (#* < ?1), the set of populations Q = 
(ni5 

II2, ..., Uk) is divided into three mutually exclusive and collectively exhaustive 

subsets : Q,B = 
(11* : ?i% < fi0+Sl), Q.i = 

(tti : /?0+K < H < /?o+^i) and 

Q.G = 
(n? : [ii > /?o+^i)- The goal of the experimenter is to partition O 

into two disjoint subsets Sb and Sg such that Sb 3 &b and Sg Z) &g- Any 
such partition is termed as a correct decision (CD). (This means that any 
decision regarding Hi e ili is correct.) The experimenter specifies a third 

constant P* (2-* < P* < 1) and requires a procedure which guarantees the 

probability requirement that 

P(CD\flL;<T2)>P*W, ... (1.1) 

where fi denotes the mean vector (fi0, ?ix, ...,?ik). See Gibbons, Olkin and 

Sobel (1977, Ch. 10) and Gupta and Panchapakesan (1979, Ch. 20) for some 

practical applications of this problem and for alternative formulations. 

Tong proposed the following procedure to meet the above goal : Take 

N0 observations X^ (1 < j < N0) from each II ? (0 < i < k); all the observa 

AMS (1980) subject classification : 62F07, 62J15. 

Key words and phrases : Multiple comparisons, test population, control population, 

indif?erence-zone, normal distribution, optimal procedure. 
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tions being independent. Compute a? = N'1 2 X# (0 ̂  i < k), and use 
3 = 1 _ 

the decision rule SB = 
(Ut : li-X0 < 8*) and SG = 

(U{ : Z<?X0 > **) 
where #* = 

(5*+^2)/^- Tong provided tables of NQ ^actually a repara 

metrized version of N0 namely ? = 
{(S%?8D?2o}<\/N0?2) which guarantee 

(1.1) for selected values of k and P*. An extract of this table also appears in 

Gibbons, Olkin and Sobel (1977). 

A natural question that arises after studying this procedure is the follow 

ing : "How much can you save on the total sample size and still guarantee 
the same probability requirement by (1) allocating unequal sample sizes to 

II0 and Wi (I < i < k); and (2) choosing a critical constant possibly different 

from 8* in the decision rule described above ?" Sobel and Tong (1971) have 

considered the optimal choice of the sample sizes although they have not 

given any tables for their procedure. The second option does not appear 
to have received any attention. 

The purpose of the present paper is to study the simultaneous optimal 

(in a sense to be made more precise later) choice of both the options and 

produce the necessary tables. In turns out that savings of up to 20% in 

the total sample size are possible with our procedure over that of Tong's 

procedure for the range of k and P* values studied. For this reason, the 

results of this paper should be of importance to practitioners. On the 

theoretical side, the method used in obtaining the optimal value of the critical 

constant and proving the least favourable (LP) configuration of the decision 

procedure (note that Tong's proof does not hold here since it depends on the 

fact that the value of the critical constant = 
8*) also appears to be interesting 

and of potential use in some other problems. 

We consider the following generalization of Tong's procedure : Take 

iV0 observations X0; (1 < j < NQ) from Il0 and N1 
= 

c2NQ (c > 0) observations 

Xij (1 < j < Ni) from each Iii (1 < i < &), all the observations being inde 

pendent. Compute the sample means Xt (0 < i < k) and use the decision 

rule 8B = 
{Ui Xt-I0 < ?Urji/?), SG = 

(??| : Xt-X0 > daj^N) where 

N = 
iVo+M^ 

= 
(l + kc2)NQ denotes the total sample size and c, d and N are 

to be determined so that (1.1) is guaranteed. Denote this generalized proce 
dure by R(c, d) 

= 
R(c, d\8\, ?*, P*, h). In this paper we determine an 

A. 

optimal choice of c and d, say ? and d, and then give tables for implementing a. 

R(c, d). Note that in the present notation Tong's procedure is denoted 

by E(l, A) and Sobel and Tong's procedure by R(?, A) where A = 
(A1+A2)/2 

and Ai = 
8*<s/N?<x for i = 1, 2. 
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The following is a brief outline of the paper. In Section 2 we first formulate 

the optimization problem. Then we show that d = A for k = 1 and k even, 

but d ̂  A for k odd (k > 3). The LF configuration for R(d, d) is the same 
as that obtained by Tong for jB(1, A); see Theorem 2.1 for these results. In 

Sections 2.1 and 2.2 we derive the equations necessary for computing the 

optimal solution 6, d and the associated N = 
N(6, d) (actually a reparametrized 

version of N namely b = 
(8\? 8*)V?vz/2cr). In Remark 2.2 we observe that 

for k odd (k > 3) S and ? do not depend on #* and 8% and d depends on them 

only through their ratio y 
= 

??/?*. More importantly, for fixed (k, P*), if 

given b and d for some y, the ?-value for any other y can be obtained by a 

very simple relation (2.21). This last result greatly simplifies the extent of 

the tabulation required. The necessary tables are presented in Section 3 

where an example of their use and numerical comparisons with Tong's proce 

dure are also given. Some suggestions are given in Section 4 regarding the 

case where or2 is unknown. 

2. Analytical results 

2.1. The infimum of P(CD) and the optimal choice of d. Since any 

decision regarding Hi e Qj is correct, to find the infimum of P(CD) of R(c, d) 

w.r.t. (x, we may restrict attention to jji such that Qj is empty. Further 

more, since P(CD) is increasing in ?i%??i^ for 11* e ?Ig and decreasing in /?*?ju,0 

for Hi e Qb, it is minimized when /?(?/?0 
= 

8\ f?r n* e Qg and ?H?fto 
= & 

for Hi e ?2j5. Thus in finding the infimum of P(OD) w.r.t. jjl, without loss 

of generality, we can restrict attention to parameter configurations fi?(r) 
where /???/?? 

= ... = 
/4~/A 

= #* and fi?r+x?fio 
= ... = 

/?*?/?o 
= #> ^or some 

p, 0 < r < ?. Therefore our optimization problem can be formulated as 

follows. (For mathematical convenience we shall relax the integer restrictions 

on N0, Nx and N and henceforth regard them as nonnegative variables.) 

For specified values of 8X, 8*, P*, k and cr2 find the minimum N such that 

max max min P{GD|(i?(r)> ?"2} > p*- - ?2-1) 
c>0 # 0^ r^ fc 

In (2.1), 

P{CD|{jt?(r),cr2} 
= 

P{X|-X?<dcr/v'^(? 
= l, ...,?"),Ii-I0>?o-/VW 

= r+1, ...,k)\V-?{r),<r2} 

= 
P{7, < cl?-A^l+ctwiHW)-1'2 (? 

= 
1, ..., r), 

Yt < c(A,-a)(lH-6?)-??(i+Ec>)-w (j 
= r+1,..., k)} 

... (2.2) 
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where Yt are standard normal random variables (r.v.'s) with covi(fi, Yj) 
= p = 

c2/(l+c2) for 1 < i, j <; r or r+1 <; i, j < k and corr(r$, Yj) 
= ? 

p 
for 1 <; i <; r and r-fl < j < i. An alternative expression for (2.2) is 

P{CD|jji?(r),<r2} 

= f O^?z+?d-AiKl+fo2)-^^ ... (2.3) ??0 

where O(-) and ?i(-) denote, respectively, the c.d.f. and the p.d.f. of a standard 

normal r.v. Denote the r.h.s. of (2.3) by i?r(c, d, r) 
= 

i?r(c, d, r\ A1? A2, k). 
We consider two cases : 

Case 1. k = 1 : Here it is straightforward to see that 

max max min i?r(c, d, r) 
c> 0 d r-0, 1 

= max max min{0[c(d?AJ/?l+c2)], <D[c(A2-d)/(l+c2)]} o o d 

= max Otc?Aa-Ai^?l+c2)] 
c> 0 

= 
<t[(A2-Ax)/4] ... (2.4) 

where the optimal (saddle-point) value d = 
(A!+A2)/2 

= A and 6=1. Thus 

R(l, A) is optimal in this case and the corresponding minimum total sample 
size is given by 

N = 
le^O-^P*)}2/^*-^)2. 

... (2.5) 

Next consider 

Case 2. k > 1 : We note that for fixed c, 

max min ijr(c, d, r) 
= min max \jr(c, d, r), 

d r r d 

and therefore we may solve this part of the problem by fixing r (0 ̂  r < k) 

and obtaining the maximizing value of d, say, dr = 
dr(c) first. From (2.2) 

A. A. A. >v 
it is obvious that d0 

= ? oo and d& = -f-oo and ijr(c, d0, 0) 
= 

^(c, dk, k) 
= 1 

for any c > 0. Next for 1 ̂  r ̂  &? 1, dr satisfies (2.6) below obtained by 

setting the derivative of the r.h.s. of (2.3) w.r.t. d (the differentiation under 

the integral sign is permissible here) equal to zero : 

r f W-^ciz+Atfr-A^W-r [c{^z+A(A2-dr)}]m^+A(dr-?1)}m(z) ? 00 

= (k-r) foriciz+Aidr-^W-r-nci-z+Ai^-dr)}] ? oo 

X0[c{-2+?(Aa-dr)}]*D(2), ... (2.6) 
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where we have put A = 
A(k, c) = 

(l+&c2)~1/2. A similar equation can be 
a 

obtained for dk_r which by a change of variables z' ? ?z in both the integrals 
and dropping the primes can be written as 

r f ^-\c{z+A{^-dk_r)}^-r [c{-Z+M-r-AJ}Mc{2+?(A2-4-r)}]?<I>(z) 

= (fc-r) J 0'-[c{Z+4(A2-4-r)}]0*-^-1[c{-2+^(4_r-A1)}] ? 00 

X:$[c{-z+A(dk_r-^)}]d<!>(z). 
... (2.7) 

Remark 2.1. Here we are assuming that solutions exist to (2.6) and (2.7), 

that they are unique and that they are in fact associated with the maximums. 

It is difficult to analytically verify these assumptions. But we made a 

numerical study of the integral (2.3) for 2 < k < 5, 1 < r < k?1, and for 

selected values of c e [0-5, 1] and of (Ax, A2). We found that the integral 

behaves as a unimodal function of d with a unique maximum. This provides 
an empirical justification of the stated assumptions. In fact it is observed 

that dr is increasing in r which is intuitive upon inspecting expression (2.2). 

From (2.6) and (2.7) it follows that 

dr+dk_r 
= 

AX+A2 
... (2.8) 

a a 

for 1 < r < k?1, dr < A for r < k\2 and vice-versa and dk/2 
= A for k even. 

It is also easy to see that 

?ftc, dr, r) 
= 

^(c, 4-r, *-r). ... (2.9) 

We are now in a position to prove the following theorem. 

Theorem 2.1 : Let m = 
[i/2] where [x] denotes the largest integer < x 

and let c > 0 6e y?xed. Then for k even we have 

A 
min i?r(c, dr, r) 

= 
\?r(c, A, m). ... (2.10) 

0? r<? A; 

For k odd (k ̂  3) we have 
A A 

min i?r(c, dr, r) 
= 

^r(c, dw, m) 
0 < r < jfc 

= 
^(c,4,+1,m+l) 

-. (2.11) 

where dm < A < dm+1. 

a 3-9 
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Proof: To prove (2.10) for k even we only have to show that 

i?r(c, A, r) > i?r(c, A, m) for r ̂  m. This follows by the theorem given in the 

appendix of Tong (1969) or using Slepian's (1962) inequality in (2.2). 

To prove (2.11) for k odd (k > 3) again we only have to show that 

ty{s>dm,r)^ T?r(c,dm,m) for r^m, m+1. Because of (2.9) we can take 

r <m. Then from (2.2) we obtain 

f(c, dm, r) 
= 

P{Yi < (dm-\)B(i 
= 1, ..., r), Yt^(A2-dm)B (i 

= r+l, ...,k)} 
... (2.12) 

where we have put B = 
B(k, c) 

= 
(l+c2)~1/2A and the Y% are as given below 

A. A. 

(2.2). Now since m < k\2, we have that dm?Ax < A2?dm and therefore if 

we increase r to m then we decrease (do not increase) the upper limits on the 

Yi. Next if we increase r to m then we maximize the number of negative 
correlations between the TVs (from r(k?r) to m(k?m)). This latter fact 

together with Slepian's inequality and the former fact that the upper limits 

on the Y i decrease, allow us to conclude that the probability in (2.12) decreases, 
A A 

i.e., \?r(c, dm, r) > i/r(c, dm, m) for r < m and hence (2.11) follows. The fact 
A A A 

that dm < A < dm+1 follows from the earlier observation that dr < A for 

r < k\2. This proves the theorem. 

Henceforth it would be convenient to use the reparametrization 

b = 
(K-KW'Nl2a 

= 
(A2~A1)/2, 

b1 
= 

d-A1 
= 

d-2bl(y-l), 

and b2 
= 

A2-d 
= 

{2by?(y?l)}-d. 
... (2.13) 

In the new notation we have dm = 
&(y+l)/(y? 1) for ? even and 

J 0^[c(?+6i?)]0OT[c(?2;+6-?)]d?(2;) (for Jfc even) ... (2.14a) 

f(c, dm, m) = 1 

I J 0^[c(2+61^)](D^-w[c(~2;+624)]??<D(^) (for i odd) ... (2.14b) 
L -? 

where in (2.14b), d satisfies the equation (for fixed c) 

m J O^-^c^+^ft^JO?-^^i-^+^^J^fc^+^fc!)]^^) ? 00 

= (?~m) ] 0^[c(^+^61)]0*^-1[c(-^+^62)]?S[c(--2:H-^62)]da)(^). ... (2.15) 
?00 
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2.2. The optimal choice of c. In this section we consider the problem of 

maximizing \?r(c) 
= 

\?r(c, dm, m) w.r.t. c. As in Sobel and Tong (1971) (also 
see Bechhofer, 1969) we set f(c) 

= 
di/r(c)jdc 

= 0 and obtain c as the solution 

to the resulting equation. We give in (2.16) below the equation obtained 

by setting the derivative of the r.h.s. of (2.14b) (note that (2.14b) reduces to 

(2.14a) if we put for k even, bx 
= 

b2 
= b and m = 

k?m) w.r.t. c equal to 

zero; we omit the details since similar details may be found in Sobel and 

Tong (1971). In taking this derivative, we regard bx and 62 as fixed (and not 

dependent on c through (2.15)); eventually the equations i/r'(c) 
= 0 and (2.15) 

will be solved simultaneously thus accounting for the interdependence of 

various quantities. We have 

wi f (y--&i^)^-Hy)*fc^[-y+c(61+62)^]^(2//c~M)^(I)(2/) ? oe 

+(k-m) ; (y-b2D)^-m-i{y)<pmi_y+c(b1+b2)A]<?>(ylc-b^A)d(b(y) = 0, ? 00 

... (2.16) 

where we have put D = 
D(k, c) 

= kczA*. For k even (2.16) simplifies to the 

equation 

J (y-bD)Q>^-1(y)0^(?y+2bcA)(?)(ylc-bA)dQ>(y) 
= 0. ... (2.17) 

?oo 

For k = 2, as in Sobel and Tong (1971), (2.17) simplifies even further to the 

equation 

{&(l-2c4)/(l+2c2)(l+c2)1/2}0[6c(l+c2)-1/2] 
= 

C(j)[bc(l+c2)-1/2]. ... (2.18) 

The two integrals on the l.h.s. of (2.16) can be integrated by parts and 

from the resulting expression it can be shown that as P* -> 1 (i.e., as 

bx, b2 -? oo), the solution t2 -? k~V2\ a result also obtained by Sobel and Tong 

(1971) although for the less general case of d = A and, in a different context, 

by Bechhofer (1969). Thus for P* close to one, an approximation to optimal 

allocation is obtained by letting N0^Nx<\/k. 

2.3. Equations for computing the optimum solutions. The constrained 

optimization problem (2.1) involves a single inequality which can therefore 

be replaced by the corresponding equality. This fact together with the 

results obtained in the previous two sections enable us to reduce the optimiza 

tion problem (2.1) to that of solving a system of simultaneous equations 

as follows. 
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Gase 1. k even : For given values of P* and k find the solution in b 

and c (6 and t) to the following equations : 

(i) The r.h.s. of (2.14a) 
= P*. 

(ii) Eq. (2.17) (for?> 2). 

Eq. (2.18) (fork= 2). ... (2.19) 

Case 2. k odd (k > 3) : For given values of y = 
81/81, P* and k find the 

solution in 6, c and d (b, ? and d) to the following equations : 

(i) The r.h.s. of (2.14b) 
= P*. 

(ii) Eq. (2.15). 

(iii) Eq. (2.16). ... (2.20) 

The quantities bx and b2 appearing in the above equations are given by (2.13). 

Remark 2.2 : Since d = A for k = 1 and k even, b and ? do not depend A 
on 81 and ?? for fixed (k, P*) although N does. Now consider the case k odd, 

k > 3. From (2.13), (2.14b), (2.15) and (2.16) it is clear that ?, ?, d depend 
on 81, 81 only through their ratio y = 8*?81 For fixed (k, P*), let (6, ?, d) 
denote the optimal solution corresponding to y and (6', V, d') corresponding 
to y'. Now note that b and d appear in the relevant equations only through 

bx and b2 and that if b' = 6 and 

^ = 
d+S(r-r')/{(r-i)(r-i)} ... (2.21) 

then S; 
= $, (i = 1, 2). Therefore, S' = S, V = ? and <f given by (2.21) is 

the optimal solution corresponding to y'. Thus b and ? do not depend on y 
A, ^ A. 

although ? does. Because of (2.21), however, it suffices to compute (b, ?,d) 

just for one value of y. 

3. Numerical results 

3.1. Tables. The sets of simultaneous equations (2.19) and (2.20) were 

solved on Northwestern's CDC 6600 computer using the IMSL subroutine 

ZSYSTM for k = 
2(1)10, P* = 0*75, 0-90, 0-95, 0-99 and y 

= 2 (for k odd, 
k > 3). The values of (o, ?) computed via (2.19) for even values of k are given 

in Table 1. The values of (t, t, d) computed via (2.20) for odd values of k 

are given in Table 2. For k = 1 the standard normal tables can be used in 

conjunction with (2.5). 
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TABLE 1. VALUES OF b AND c FOR EVEN k 

0.75 0.90 0.95 0.99 

10 

2.7586 3.9691 4.7314 6.2186 

0.8232 0.8387 0.8404 0.8409 

4.4251 5.8026 6.6787 8.4059 

0.7329 0.7228 0.7174 0.7110 

5.7241 7.2315 8.1947 10.1048 

0.6733 0.6578 0.6509 0.6432 

6.8373 8.4532 9.4891 11.5523 

0.6310 0.6139 0.6066 0.5988 

7.8319 9.5424 10.6417 12.8389 

0.5990 0.5813 0.5741 0.5663 

Note : The upper entry in each cell is b and the lower entry is c. 

TABLE 2. VALUES OF S, c AND d FOR ODD k(k > 3) 

0.75 0.90 0.95 0.99 

3.5671 4.8826 5.7144 7.3443 

3 0.7679 0.7684 0.7660 0.7623 

10.1544 14.1926 16.7337 21.6950 

5.0697 6.5206 7.4453 9.2732 

5 0.6991 0.6861 0.6799 0.6729 

14.8672 19.2702 22.0705 27.5971 

6.2798 7.8461 8.8484 10.8404 

7 0.6501 0.6338 0.6268 0.6190 

18.5810 23.3153 26.3412 32.3485 

7.3350 9.0012 10.0706 12.2042 

9 0.6138 0.5964 0.5892 0.5814 

21.7932 26.8194 30.0427 36.4687 

A A 
Note : The upper entry in each cell is b, the middle entry c and 

the lower entry d. The d values are computed for y 
= 2. For 

any other y use the relation d = tabulated d+b(2?y)l(y 
? 

J). 
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It might be noted that the approach of ? to k"lfi as P* increases is fairly 

rapid and appears to be monotonie (for P* ^ 0-75) for k > 4. For k odd 

(k > 3), the values of d are not too much off from Tong's choice d = A 

= 
b(y+l)l(y? 1) 

= 36 for 6 = 5. Not surprisingly, the agreement between 

the two d-values gets closer as k increases (and/or P* increases). 

A numerical comparison with Tong's procedure shows that the savings 

because of using R(?, d) instead of P(l, A) are in the range of 3% to 20% for 
the (k, P*) values studied in this paper and they in general increase with both 

k and P\ The ratio of the total sample size required by R(?, d) to that 

required by R(l, A) is given in Table 3 for k = 1(1)10 and P* = 0-75, 0-90, 
0-95 and 0-99. 

TABLE 3. RATIO N$, d)?N(lf ?) OF THE TOTAL SAMPLE 

SIZES REQUIRED BY R(c, d) AND R(\, A) TO 

GUARANTEE GIVEN P* 

\ 
P* 0.75 0.90 0.95 0.99 

Jc \ 

1 1.0000 1.0000 1.0000 1.0000 

2 0.9652 0.9708 0.9713 0.9714 

3 0.9138 0.9193 0.9205 0.9226 

4 0.9278 0.9170 0.9115 0.9050 

5 0.9043 0.8902 0.8835 0.8758 

6 0.8984 0.8785 0.8693 0.8583 

7 0.8835 0.8611 0.8509 0.8388 

8 0.8764 0.8506 0.8390 0.8250 

9 0.8657 0.8381 0.8257 0.8108 

10 0.8593 0.8295 0.8101 0.8000 

We now give an example of the use of the tables. 

Example : Suppose that we have k = 9 test populations with means 

?i% (1 < i < 9) which are to be compared with a given control population 

with mean /?0, all the populations being normal with a common known vari 

ance cr2 - 0-5. Let 8{ 
= 0-2, 8? 

*= 1-0 and y 
=? 

ij/if 
= 5-0. Thus popula 

tions with means ?i% < /?0+0-2 are regarded as "bad" (belong to the set ?b) 
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while those with means m > /i0+l'0 are regarded as "good" (belong to the 

set ?iey). We wish to select a subset S g of test populations (Sb being the com 

plement of Sq) which contains all "good" populations but no "bad" popula 

tions with probability at least P* = 0-90. For this purpose the sample sizes 
A A A *> 

N0, Nx and the critical constant d to be used in the procedure i?(?, d) can be 

obtained as follows. 

From Table 2 we get t = 9-0012, 6 = 0-5964 and ?=26-8914 (for 

y 
= 

2-0). Therefore, 

frf/ 
9-0012x2x0-5 \?1 127 

L\ 1-0-2 / i 
A 

Out of these 127 observations we can allocate N0 
= 28 to the control popula 

tion and Nx 
= 11 to each of the nine test populations giving the ratio 

c = 
y/11128 

= 0-6268 which is fairly close to the optimal $. To determine d 

for y 
= 5-0 we use the formula in the footnote of Table 2 to obtain 

rf = 
26-8914+9-0012x(-3)/4 

= 20-1405. 

Thus the desired set Sq is given by 

a.-fa-.X.-X.**^!-*??}. 

... (3.1, 

Let us now compare this optimal procedure with Tong's procedure 

jB(1, A) which uses a common sample size N0 on each population including 

the control and critical constant 8* = 
(8[+8l)?2 

= 0-6 in (3.1) in place of 

0-8936. Table 1 of Tong (1969) gives A = 
{(8l-8\)?2o) ^?^2 

= 2-1986 for 

k = 9 and P* = 0-90 from which we obtain N0 
== 16. Thus the total sample 

size required by Tong's procedure is N ~ 10x16= 160. Notice that the 

optimal procedure gives a substantial saving of 33 observations. 

4. Unknown <t 

This paper solves a design problem which assumes the knowledge of cr. 

If cr is not known then, strictly speaking, the probability requirement (1.1) 

cannot be guaranteed by a single-stage procedure; one must use a two-stage 

or a sequential procedure as described in Sections 2 and 3, respectively, of 

Tong (1969). If practical considerations dictate the use of a single-stage 

procedure then one can use the results of the present paper to provide approxi 

mate solutions as follows : Either an upper bound on cr can be specified for 
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design purposes or one can specify S{ and #* as multiplesof unknown cr rather 
A A 

than as fixed constants. In both cases N0 and N1 can be calculated using the 

methods given in the paper. Once the data are collected, the decision rule 

R(6, d) should be applied by substituting the usual pooled sample standard 

deviation in place of cr. 
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